
Een klein stukje Rhynie-fossielplant met fossiele schimmels die de uiteinden koloniseren, gezien door een microscoop. Krediet: Loron et al.
Geavanceerde technologie heeft nieuwe inzichten onthuld in een wereldberoemde schat aan fossielen die cruciale aanwijzingen kunnen geven over het vroege leven op aarde.
Wetenschappers die de 400 miljoen jaar oude fossiele cache onderzoeken die in het afgelegen noordoosten van Schotland zijn ontdekt, melden dat hun resultaten een hoger niveau van moleculaire conservering in deze fossielen laten zien dan eerder werd verwacht.
Heronderzoek van de uitzonderlijk goed bewaarde schat uit Aberdeenshire heeft wetenschappers in staat gesteld de chemische vingerafdrukken van de verschillende organismen erin te identificeren.
Net zoals de Rosetta-steen egyptologen hielp bij het vertalen van hiërogliefen, hoopt het team dat deze chemische codes hen kunnen helpen meer te ontcijferen over de identiteit van de levensvormen die andere meer dubbelzinnige fossielen vertegenwoordigen.
Het indrukwekkende fossiele ecosysteem nabij het dorp Rhynie in Aberdeenshire werd ontdekt in 1912, gemineraliseerd en omgeven door hard gesteente bestaande uit silica. Bekend als Rhynie chert, komt het uit de vroege Devoon-periode – ongeveer 407 miljoen jaar geleden – en speelt het een belangrijke rol in het begrip van het leven op aarde door wetenschappers.
De onderzoekers combineerden de nieuwste niet-destructieve beeldvorming met data-analyse en[{” attribute=””>machine learning to analyze fossils from collections held by National Museums Scotland and the Universities of Aberdeen and Oxford. Scientists from the University of Edinburgh were able to probe deeper than has previously been possible, which they say could reveal new insights about less well-preserved samples.
Employing a technique known as FTIR spectroscopy – in which infrared light is used to collect high-resolution data – researchers found impressive preservation of molecular information within the cells, tissues, and organisms in the rock.
Since they already knew which organisms most of the fossils represented, the team was able to discover molecular fingerprints that reliably discriminate between fungi, bacteria, and other groups.
These fingerprints were then used to identify some of the more mysterious members of the Rhynie ecosystem, including two specimens of an enigmatic tubular “nematophyte”.
These strange organisms, which are found in Devonian – and later Silurian – sediments have both algal and fungal characteristics and were previously hard to place in either category. The new findings indicate that they were unlikely to have been either lichens or fungi.
Dr. Sean McMahon, Chancellor’s Fellow from the University of Edinburgh’s School of Physics and Astronomy and School of GeoSciences, said: “We have shown how a quick, non-invasive method can be used to discriminate between different lifeforms, and this opens a unique window on the diversity of early life on Earth.”
The team fed their data into a machine learning algorithm that was able to classify the different organisms, providing the potential for sorting other datasets from other fossil-bearing rocks.
The study, published in
Dr Corentin Loron, Royal Society Newton International Fellow from the University of Edinburgh’s School of Physics and Astronomy said the study shows the value of bridging paleontology with physics and chemistry to create new insights into early life.
“Our work highlights the unique scientific importance of some of Scotland’s spectacular natural heritage and provides us with a tool for studying life in trickier, more ambiguous remnants,” Dr. Loron said.
Dr. Nick Fraser, Keeper of Natural Sciences at National Museums Scotland, believes the value of museum collections for understanding our world should never be underestimated.
He said: “The continued development of analytical techniques provides new avenues to explore the past. Our new study provides one more way of peering ever deeper into the fossil record.”
Reference: “Molecular fingerprints resolve affinities of Rhynie chert organic fossils” by C. C. Loron, E. Rodriguez Dzul, P. J. Orr, A. V. Gromov, N. C. Fraser and S. McMahon, 13 March 2023, Nature Communications.
DOI: 10.1038/s41467-023-37047-1